JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Binding of oxamniquine to the DNA of schistosomes.

Hycanthone-sensitive and hycanthone-resistant schistosomes (which are also sensitive and resistant to oxamniquine) were exposed in vitro to tritium-labelled oxamniquine. The initial uptake of the drug into the schistosomes was essentially the same for the 2 strains. The homogenate of worms incubated with tritiated oxamniquine was fractionated and a purified DNA fraction was obtained by ethanol precipitation, RNAase and protease digestion, repeated phenolchloroform extractions, CsC1 gradient centrifugation and extensive dialysis. The DNA fraction from sensitive worms contained radioactive oxamniquine at a level corresponding to about 1 drug molecule per 50,000 base pairs, while the DNA from resistant worms contained essentially no drug. The results support the hypothesis that oxamniquine, like hycanthone, exerts its activity by alkylating macromolecules of sensitive schistosomes. The possibility is discussed that oxamniquine may lack the mutagenic properties of hycanthone because it is not an intercalating agent.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app