Comparative Study
Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Quantification of decellularized human myocardial matrix: A comparison of six patients.

PURPOSE: The purpose of this study was to characterize and quantitatively analyze human cardiac extracellular matrix (ECM) isolated from six different cadaveric donor hearts.

EXPERIMENTAL DESIGN: ECM was isolated by decellularization of six human cadaveric donor hearts and characterized by quantifying sulfated glycosaminoglycan content (sGAG) and via PAGE. The protein content was then quantified using ECM-targeted Quantitative conCATamers (QconCAT) by LC-SRM analysis using 83 stable isotope labeled (SIL) peptides representing 48 different proteins. Nontargeted global analysis was also implemented using LC-MS/MS.

RESULTS: The sGAG content, PAGE, and QconCAT proteomics analysis showed significant variation between each of the six patient samples. The quantitative proteomics indicated that the majority of the protein content was composed of various fibrillar collagen components. Also, quantification of difficult to remove cellular proteins represented less than 1% of total protein content, which is very low for a decellularized biomaterial. Global proteomics identified over 200 distinct proteins present in the human cardiac ECM.

CONCLUSION AND CLINICAL RELEVANCE: In conclusion, quantification and characterization of human myocardial ECM showed significant patient-to-patient variability between the six investigated patients. This is an important outcome for the development of allogeneic derived biomaterials and for increasing our understanding of human myocardial ECM composition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app