JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effects of ethanol on RhoA/Rho-kinase-mediated calcium sensitization in mouse lung parenchymal tissue.

Calcium sensitization by the RhoA/Rho-kinase (ROCK) pathway contributes to the contraction in smooth muscle. Contractile stimuli can sensitize myosin to Ca(2+) by activating RhoA/Rho-kinase that inhibits myosin light chain phosphatase activity. The present study was aimed at investigating the possible involvement of RhoA/Rho-kinase pathway in contractile responses to agonist (phenylephrine) and depolarizing (KCl) of mouse lung parenchymal tissues. Also, we investigated the effect of ethanol on RhoA/Rho-kinase pathway. Phenylephrine (10(-8)-10(-4) M) and KCl (10-80 mM) induced sustained contractions in parenchymal strips. Ethanol significantly attenuated the contractions to phenylephrine and KCl. The Rho-kinase inhibitors fasudil (5×10(-5) M) and Y-27632 (5×10(-5) M) inhibited contractions to in both control and ethanol-treated parenchymal strips. In addition, the relaxations induced by fasudil (10(-4) M) and Y-27632 (5×10(-4) M) on parenchymal strips contracted by phenylephrine but not KCl was decreased in ethanol-treatment group. Also, RhoA, ROCK1 and ROCK2 expressions were detected in mouse lung parenchymal tissue. In ethanol-treated group, expression of RhoA and ROCK1 but not ROCK2 decreased compared to control. Furthermore, ethanol causes apoptotic changes in alveolar type I epithelial cells of parenchymal tissue. These results suggest that RhoA/Rho-kinase signaling pathway plays an important role in phenylephrine- and KCl-induced Ca(2)(+) sensitization in mouse lung parenchymal tissue. Also, ethanol may be decrease phenylephrine- and KCl-induced contraction due to lowering the RhoA/Rho-kinase-mediated Ca(2+)-sensitizing by inhibiting RhoA/Rho-kinase pathway in parenchymal tissue. These results may be lead to important insights into the mechanisms of lung diseases due to alcohol consumption.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app