Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

TACC3 Is Important for Correct Progression of Meiosis in Bovine Oocytes.

Transforming acidic coiled-coil (TACC) proteins are key players during mitosis via stabilization of the spindle. The roles of TACCs during meiosis are however less clear. We used bovine oocytes to study the expression and function of TACC3 during meiosis. TACC3 mRNA was detected in bovine oocytes during meiosis using qRT-PCR, and while it was also expressed in cleavage stage embryos, its expression was down-regulated at the morula and blastocyst stages. Immunofluorescence was used to demonstrate that TACC3 co-localized with tubulin in the metaphase I and II spindles. However, TACC3 was not detected at anaphase or telophase of the first meiotic division. Aurora A, which is known to phosphorylate and activate TACC3 in mitotic cells, showed a similar pattern of gene expression to that of TACC3 in meiotic oocytes and preimplantation embryos. Aurora A protein was however only very transiently associated to the meiotic spindle. Pharmaceutical inhibition of Aurora A activity inhibited TACC3 phosphorylation but did not prevent TACC3 appearance in the spindle. Inhibiting Aurora A activity did however lead to abnormal meiotic spindle formation and impaired maturation of bovine oocytes. Similar results were obtained by knock-down of TACC3 expression using siRNA injection. These results suggest that TACC3 is important for stabilizing the meiotic spindle, but phosphorylation of TACC3 by Aurora A is not required for its recruitment to the meiotic spindle although phosphorylation of TACC3 by other kinases cannot be excluded.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app