Add like
Add dislike
Add to saved papers

Effect of Exercise on µ-Opioid Receptor Expression in the Rostral Ventromedial Medulla in Neuropathic Pain Rat Model.

OBJECTIVE: To investigate the effects of aerobic exercise on neuropathic pain and verify whether regular treadmill exercise alters opioid receptor expression in the rostral ventral medulla (RVM) in a neuropathic pain rat model.

METHODS: Thirty-two male Sprague-Dawley rats were used in the study. All rats were divided into 3 groups, i.e., group A, sham group (n=10); group B, chronic constriction injury (CCI) group (n=11); and group C, CCI+exercise group (n=11). Regular treadmill exercise was performed for 30 minutes a day, 5 days a week, for 4 weeks at the speed of 8 m/min for 5 minutes, 11 m/min for 5 minutes, and 22 m/min for 20 minutes. Withdrawal threshold and withdrawal latency were measured before and after the regular exercise program. Immunohistochemistry and Western blots analyses were performed using antibodies against µ-opioid receptor (MOR).

RESULTS: Body weight of group C was the lowest among all groups. Withdrawal thresholds and withdrawal latencies were increased with time in groups B and C. There were significant differences of withdrawal thresholds between group B and group C at 1st, 2nd, 3rd, and 4th weeks after exercise. There were significant differences of withdrawal latencies between group B and group C at 3rd and 4th weeks after exercise. MOR expression of group C was significantly decreased, as compared to that of group B in the RVM and spinal cord.

CONCLUSION: In neuropathic pain, exercise induced analgesia could be mediated by desensitization of central MOR by endogenous opioids, leading to the shift of RVM circuitry balance to pain inhibition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app