Add like
Add dislike
Add to saved papers

Novel approach for the detection of tubular cell migration into the interstitium during renal fibrosis in rats.

BACKGROUND: The process of epithelial-mesenchymal transition (EMT), which is generally defined by phenotypic changes of injured tubules such as loss of epithelial markers or acquisition of mesenchymal markers, implies various activating steps, including proliferation, migration, and ability to produce extracellular matrix proteins. We established here a novel approach for the detection of tubular cell migration into the interstitium during renal fibrosis in vivo.

RESULTS: Using an osmotic pump, bromodeoxyuridine (BrdU) was continuously given to 7-week-old Wistar rats for 4 weeks, and BrdU-positive cells were detected by immunostaining. BrdU-positive cells were present in aquaporin-1-positive proximal tubules, but not in the interstitium of BrdU-treated rat kidneys. After unilateral ureteral obstruction (UUO), some BrdU-positive tubular cells protruded from the basement membrane and migrated into the interstitium. Interstitial BrdU-positive cells were co-localized with alpha-smooth muscle actin, fibroblast specific protein-1, vimentin, and type I collagen, but not with CD68 or CD3. No BrdU-positive cells were observed in the interstitium of sham-operated kidneys. The number of BrdU-positive cells migrating into the interstitium significantly increased and peaked at 8 days after UUO.

CONCLUSIONS: Long-term BrdU labeling marked some of the proximal tubular cells and enabled us to detect tubular cell migration into the interstitium after UUO. This simple method might be useful to detect EMT in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app