Add like
Add dislike
Add to saved papers

Cloning and characterization of a novel PE_PGRS60 protein (Rv3652) of Mycobacterium tuberculosis H37 Rv exhibit fibronectin-binding property.

The binding of pathogenic bacteria to extracellular matrix components enhances adhesion and invasion of host cells. The host receptor proteins such as fibronectin (Fn) targeted to pathogenic ligands that have clinical importance. In the present study, we cloned, expressed, purified, and identified a novel Fn-binding protein from PE_PGRS60 (Rv3652) of Mycobacterium tuberculosis H37 Rv. The protein product of Rv3652 showed optimum binding efficiency to 10 ng Fn at 0.2 µg purified protein of PE_PGRS60 and 20 ng Fn at 0.2 µg concentrations, respectively. PE_PGRS60 protein (primary sequences) of different pathogenic mycobacterium species retrieved from NCBI exhibited complete homology at the 104 residues on multiple sequence alignment. The primary sequence of protein from H37 Rv was further used to predict cleavage signals. The secondary structure prediction method revealed a number of residues responsible for alpha helices formation and percentage of residues participating in the random coils and extended strands. In addition, online prediction tools such as B- and T-cell epitopes showed the surface probability scale and antigenic propensity scale. The current finding opens new opportunity to mycobacterial survival and pathogenesis research of PE-polymorphic GC-rich repetitive sequences (PE-PGRS) family proteins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app