Journal Article
Review
Add like
Add dislike
Add to saved papers

Potential New Agents for the Management of Hyperkalemia.

Hyperkalemia is a common electrolyte disturbance with multiple potential etiologies. It is usually observed in the setting of reduced renal function. Mild to moderate hyperkalemia is usually asymptomatic, but is associated with poor prognosis. When severe, hyperkalemia may cause serious acute cardiac arrhythmias and conduction abnormalities, and may result in sudden death. The rising prevalence of conditions associated with hyperkalemia (heart failure, chronic kidney disease, and diabetes) and broad use of renin-angiotensin-aldosterone system (RAAS) inhibitors and mineralocorticoid receptor antagonists (MRAs), which improve patient outcomes but increase the risk of hyperkalemia, have led to a significant rise in hyperkalemia-related hospitalizations and deaths. Current non-invasive therapies for hyperkalemia either do not remove excess potassium or have poor efficacy and tolerability. There is a clear need for safer, more effective potassium-lowering therapies suitable for both acute and chronic settings. Patiromer sorbitex calcium and sodium zirconium cyclosilicate (ZS-9) are two new potassium-lowering compounds currently in development. Although they have not yet been approved by the US FDA, both have demonstrated efficacy and safety in recent trials. Patiromer sorbitex calcium is a polymer resin and sorbitol complex that binds potassium in exchange for calcium; ZS-9, a non-absorbed, highly selective inorganic cation exchanger, traps potassium in exchange for sodium and hydrogen. This review discusses the merits of both novel drugs and how they may help optimize the future management of patients with hyperkalemia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app