Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Electronic Transport via Homopeptides: The Role of Side Chains and Secondary Structure.

Many novel applications in bioelectronics rely on the interaction between biomolecules and electronically conducting substrates. However, crucial knowledge about the relation between electronic transport via peptides and their amino-acid composition is still absent. Here, we report results of electronic transport measurements via several homopeptides as a function of their structural properties and temperature. We demonstrate that the conduction through the peptide depends on its length and secondary structure as well as on the nature of the constituent amino acid and charge of its residue. We support our experimental observations with high-level electronic structure calculations and suggest off-resonance tunneling as the dominant conduction mechanism via extended peptides. Our findings indicate that both peptide composition and structure can affect the efficiency of electronic transport across peptides.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app