Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

RhoB loss induces Rac1-dependent mesenchymal cell invasion in lung cells through PP2A inhibition.

Oncogene 2016 April 8
Non-small-cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide, which is mainly due to its high risk of metastatic dissemination. One critical point of this process is the ability of cancer cells to detach from the primary tumor and migrate through the extracellular matrix; however, the underlying molecular mechanisms are not yet fully understood. In the present study, we identified the small GTPase RhoB as a key regulator of bronchial cell morphology in a three-dimensional (3D) matrix. RhoB loss, which is frequently observed during lung cancer progression, induced an epithelial-mesenchymal transition (EMT) characterized by an increased proportion of invasive elongated cells in 3D. The process was mediated by Slug induction and E-cadherin repression. In addition, downregulation of RhoB induced Akt1 activation, which in turn activated Rac1 through the guanine-exchange factor Trio to control cell shape rearrangement. Further, we provide evidence that RhoB interacted with and positively regulates phosphatase PP2A through the recruitment of its regulatory subunit B55, which was found to be crucial for Akt dephosphorylation. B55 inhibition completely suppressed RhoB-mediated PP2A regulation. Finally, we show that PP2A inactivation, by targeting either its catalytic or its regulatory B55 subunit, completely reversed RhoB-dependent morphological changes and also fully prevented the ability of RhoB to decrease the invasiveness of bronchial cells. Altogether, these results highlight a novel signaling axis and describe new molecular mechanisms that could explain the tumor suppressor role of RhoB in lung cancer. Therefore, we propose that RhoB could be responsible for early metastatic prevention by inhibiting the EMT-derived invasiveness of lung cells through the control of PP2A activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app