Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Exercise training restores oxidative stress and nitric oxide synthases in the rostral ventrolateral medulla of renovascular hypertensive rats.

We hypothesize that exercise training (EX) reverses the level of nitric oxide (NO) and oxidative stress into rostral ventrolateral medulla (RVLM) of renovascular hypertensive rats (two kidneys, one clip - 2K1C). Microinjections of L-arginine (5 nmol), L-NAME (10 nmol), or saline (100 nl) were made into RVLM of 2K1C and normotensive (SHAM) rats sedentary (SED) or subjected to swimming for 4 weeks. mRNA expression (by qRT-PCR) of nitric oxide synthases isoforms (nNOS, eNOS, and iNOS), manganese superoxide dismutase (MnSOD), copper and zinc superoxide (Cu/ZnSOD), catalase (CAT), NADPH oxidase subunit p22(phox), concentration of thiobarbituric acid-reactive substances (TBARS), and CAT activity into RVLM were evaluated. The mean arterial pressure was reduced in 2K1C EX compared with that in 2K1C SED rats. L-arginine into RVLM induced hypertensive effect in 2K1C and SHAM SED rats, while L-NAME prevented hypertensive effect only in SHAM-SED. EX reduced hypertensive effect of L-arginine in SHAM and 2K1C rats. mRNA expression of NOS isoforms, p22(phox), and concentration of TBARS were increased while CAT and Cu/ZnSOD expression and CAT activity decreased into RVLM of 2K1C-SED compared with SHAM-SED rats. Additionally, EX reversed mRNA expression of CAT and NOS isoforms, concentration of TBARS, and CAT activity into RVLM of 2K1C-EX rats. These data suggest that the levels of NOS and oxidative stress into RVLM are important to determine the level of hypertension. Furthermore, EX can restore the blood pressure by reversing the levels of NOS and CAT expression, and reducing TBARS concentration into RVLM for the physiological state.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app