COMPARATIVE STUDY
EVALUATION STUDIES
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

P wave detection and delineation in the ECG based on the phase free stationary wavelet transform and using intracardiac atrial electrograms as reference.

Robust and exact automatic P wave detection and delineation in the electrocardiogram (ECG) is still an interesting but challenging research topic. The early prognosis of cardiac afflictions such as atrial fibrillation and the response of a patient to a given treatment is believed to improve if the P wave is carefully analyzed during sinus rhythm. Manual annotation of the signals is a tedious and subjective task. Its correctness depends on the experience of the annotator, quality of the signal, and ECG lead. In this work, we present a wavelet-based algorithm to detect and delineate P waves in individual ECG leads. We evaluated a large group of commonly used wavelets and frequency bands (wavelet levels) and introduced a special phase free wavelet transformation. The local extrema of the transformed signals are directly related to the delineating points of the P wave. First, the algorithm was studied using synthetic signals. Then, the optimal parameter configuration was found using intracardiac electrograms and surface ECGs measured simultaneously. The reverse biorthogonal wavelet 3.3 was found to be optimal for this application. In the end, the method was validated using the QT database from PhysioNet. We showed that the algorithm works more accurately and more robustly than other methods presented in literature. The validation study delivered an average delineation error of the P wave onset of -0.32±12.41 ms when compared to manual annotations. In conclusion, the algorithm is suitable for handling varying P wave shapes and low signal-to-noise ratios.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app