Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Tannic acid modulates excitability of sensory neurons and nociceptive behavior and the Ionic mechanism.

M/Kv7 K(+) channels, Ca(2+)-activated Cl(-) channels (CaCCs) and voltage gated Na(+) channels expressed in dorsal root ganglia (DRG) play an important role in nociception. Tannic acid has been proposed to be involved in multiple beneficial health effects; tannic acid has also been described to be analgesic. However the underlying mechanism is unknown. In this study, we investigated the effects of tannic acid on M/Kv7 K(+), Na(+) currents and CaCCs, and the effects on bradykinin-induced nociceptive behavior. A perforated patch technique was used. The bradykinin-induced rat pain model was used to assess the analgesic effect of tannic acid. We demonstrated that tannic acid enhanced M/Kv7 K(+) currents but inhibited bradykinin-induced activation of CaCC/TMEM16A currents in rat small DRG neurons. Tannic acid potentiated Kv7.2/7.3 and Kv7.2 currents expressed in HEK293B cells, with an EC50 of 7.38 and 5.40 µM, respectively. Tannic acid inhibited TTX-sensitive and TTX-insensitive currents of small DRG neurons with IC50 of 5.25 and 8.43 µM, respectively. Tannic acid also potently suppressed the excitability of small DRG neurons. Furthermore, tannic acid greatly reduced bradykinin-induced pain behavior of rats. This study thus demonstrates that tannic acid is an activator of M/Kv7 K(+) and an inhibitor of voltage-gated Na(+) channels and CaCC/TMEM16A, which may underlie its inhibitory effects on excitability of DRG neurons and its analgesic effect. Tannic acid could be a useful agent in treatment of inflammatory pain conditions such as osteoarthritis, rheumatic arthritis and burn pain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app