Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Altered immunometabolism at the interface of increased endoplasmic reticulum (ER) stress in patients with type 2 diabetes.

The mechanism of perturbed immune function in patients with T2DM is poorly understood. Recent studies imply a role for ER stress in linking immune-system alterations and metabolism. Here, we investigated whether ER stress markers and its downstream effector signals are altered in patients with type 2 diabetes along with proinflammatory augmentation. In our study, gene and protein expression of ER stress markers (GRP-78, PERK, IRE1α, ATF6, XBP-1 and CHOP) was elevated significantly (P < 0.05) in PBMCs from T2DM patients compared with control subjects. The mRNA expression of both the proinflammatory cytokines (TNF-α and IL-6) and oxidative stress markers (p22(phox), TXNIP, and TRPC-6; P < 0.05) was also increased in PBMCs from patients with T2DM. SOCS3 mRNA expression was reduced significantly (P < 0.05) in diabetes patients. mRNA expression of most of the ER stress markers from PBMCs correlated significantly and positively with poor glycemic control, dyslipidemia, IR, and inflammatory and oxidative stress markers. Chronic ER stress in PBMCs from patients with T2DM was evident from the increased caspase-3 activity (P < 0.01), which is an executioner of apoptosis. Along with an impairment of miR-146a levels, the downstream targets of miR-146a, viz., IRAK1 and TRAF6 mRNA levels, were also elevated significantly (P < 0.01) in patients with T2DM. There was an inverse relationship among miR-146a levels and ER stress markers, inflammatory markers, and glycemic control. We demonstrate evidence of increased ER stress markers with impaired miR-146a levels and increased proinflammatory signals in patients with type 2 diabetes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app