Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome.

Nature Methods 2015 August
N(6)-methyladenosine (m6A) is the most abundant modified base in eukaryotic mRNA and has been linked to diverse effects on mRNA fate. Current mapping approaches localize m6A residues to transcript regions 100-200 nt long but cannot identify precise m6A positions on a transcriptome-wide level. Here we developed m6A individual-nucleotide-resolution cross-linking and immunoprecipitation (miCLIP) and used it to demonstrate that antibodies to m6A can induce specific mutational signatures at m6A residues after ultraviolet light-induced antibody-RNA cross-linking and reverse transcription. We found that these antibodies similarly induced mutational signatures at N(6),2'-O-dimethyladenosine (m6Am), a modification found at the first nucleotide of certain mRNAs. Using these signatures, we mapped m6A and m6Am at single-nucleotide resolution in human and mouse mRNA and identified small nucleolar RNAs (snoRNAs) as a new class of m6A-containing non-coding RNAs (ncRNAs).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app