Journal Article
Observational Study
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Circulating Histones Are Major Mediators of Cardiac Injury in Patients With Sepsis.

OBJECTIVE: To investigate the impact of circulating histones on cardiac injury and dysfunction in a murine model and patients with sepsis.

DESIGN: Prospective, observational clinical study with in vivo and ex vivo translational laboratory investigations.

SETTING: General ICU and university research laboratory.

SUBJECTS: Sixty-five septic patients and 27 healthy volunteers. Twelve-week-old male C57BL/6N mice.

INTERVENTIONS: Serial blood samples from 65 patients with sepsis were analyzed, and left ventricular function was assessed by echocardiography. Patients' sera were incubated with cultured cardiomyocytes in the presence or absence of antihistone antibody, and cellular viability was assessed. Murine sepsis was initiated by intraperitoneal Escherichia coli injection (10(8) colony-forming unit/mouse) in 12-week-old male C57BL/6N mice, and the effect of antihistone antibody (10 mg/kg) was studied. Murine blood samples were collected serially, and left ventricular function was assessed by intraventricular catheters and electrocardiography.

MEASUREMENTS AND MAIN RESULTS: Circulating histones and cardiac troponins in human and murine plasma were quantified. In 65 patients with sepsis, circulating histones were significantly elevated compared with healthy controls (n = 27) and linearly correlated with cardiac troponin T levels (rs = 0.650; p < 0.001), noradrenaline doses required to achieve hemodynamic stability (rs = 0.608; p < 0.001), Sequential Organ Failure Assessment scores (p = 0.028), and mortality (p = 0.008). In a subset of 36 septic patients without prior cardiac disease, high histone levels were significantly associated with new-onset left ventricular dysfunction (p = 0.001) and arrhythmias (p = 0.01). Left ventricular dysfunction only predicted adverse outcomes when combined with elevated histones or cardiac troponin levels. Furthermore, patients' sera directly induced histone-specific cardiomyocyte death ex vivo, which was abrogated by antihistone antibodies. In vivo studies on septic mice confirmed the cause-effect relationship between circulating histones and the development of cardiac injury, arrhythmias, and left ventricular dysfunction.

CONCLUSION: Circulating histones are novel and important mediators of septic cardiomyopathy, which can potentially be utilized for prognostic and therapeutic purposes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app