JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Towards the identification of multi-parametric quantitative MRI biomarkers in lupus nephritis.

PURPOSE: To identify potential biomarkers of the renal impairment in lupus nephritis using a multi-parametric renal quantitative MRI (qMRI) protocol including diffusion weighted imaging (DWI), blood oxygen level dependent (BOLD), arterial spin labeling (ASL) and T1rho MRI between a cohort of healthy volunteers and lupus nephritis (LN) patients.

MATERIALS AND METHODS: The renal qMRI protocol was performed twice with repositioning in between on 10 LN patients and 10 matched controls at 1.5 T. Navigator-gated and breath-hold acquisitions followed by non-rigid image registration were used to control respiratory motion. The repeatability of the 4 MRI modalities was evaluated with the intra-class correlation coefficient (ICC) and within-subject coefficient of variation (wsCV). Unpaired t-test and stepwise logistic regression were carried out to evaluate qMRI parameters between the LN and control groups.

RESULTS: The reproducibility of the 4 qMRI modalities ranged from moderate to good (ICC=0.4-0.91, wsCV≤12%) with a few exceptions. T1rho MRI and ASL renal blood flow (RBF) demonstrated significant differences between the LN and control groups. Stepwise logistic regression yielded only one significant parameter (medullar T1rho) in differentiating LN from control groups with 95% accuracy.

CONCLUSION: A reasonable degree of test-retest repeatability and accuracy of a multi-parametric renal qMRI protocol has been demonstrated in healthy volunteers and LN subjects. T1rho and ASL RBF are promising imaging biomarkers of LN.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app