Add like
Add dislike
Add to saved papers

One-step femtosecond laser patterning of light-trapping structure on dye-sensitized solar cell photoelectrodes†.

Light-trapping patterns were constructed in TiO2 photoelectrodes for dye-sensitized solar cells (DSSCs) by a one-step femtosecond laser structuring method that utilized ablation to create patterns at the surface of nanostructured TiO2 films. As a result, much more light was trapped in the photoelectrodes. Grating and orthogonal-grid patterns were studied, and the light trapping performance was optimized through the adjustment of pattern spacing, which was easily realized in the laser ablation process. With a 5-μm-spacing orthogonal-grid pattern, DSSCs showed a highest photon-to-electron conversion efficiency of 9.32% under AM 1.5G, a 13.5% improvement compared to the same cell without laser ablation. This simple and universal laser ablation method could be used to process many kinds of nanomaterials, and could be applied for various devices with nanostructures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app