JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Pioglitazone Identifies a New Target for Aneurysm Treatment: Role of Egr1 in an Experimental Murine Model of Aortic Aneurysm.

Peroxisome proliferator-activated receptor x03B3; agonists have been shown to inhibit angiotensin II (AngII)-induced experimental abdominal aortic aneurysms. Macrophage infiltration to the vascular wall is an early event in this pathology, and therefore we explored the effects of the peroxisome proliferator-activated receptor x03B3; agonist pioglitazone on AngII-treated macrophages. Using microarray-based expression profiling of phorbol ester-stimulated THP-1 cells, we found that a number of aneurysm-related gene changes effected by AngII were modulated following the addition of pioglitazone. Among those genes, polycystic kidney disease 1 (PKD1) was significantly up-regulated (multiple testing corrected p < 0.05). The analysis of the PKD1 proximal promoter revealed a putative early growth response 1 (EGR1) binding site, which was confirmed by chromatin immunoprecipitation (ChIP) and quantitative PCR. Further analysis of publicly available ChIP-sequencing data revealed that this putative binding site overlapped with a conserved EGR1 binding peak present in 5 other cell lines. Quantitative real-time PCR showed that EGR1 suppressed PKD1, while AngII significantly up-regulated PKD1, an effect counteracted by pioglitazone. Conversely, in EGR1 short hairpin RNA lentivirally transduced THP-1 cells, reduced EGR1 led to a significant up-regulation of PKD1, especially after treatment with pioglitazone. In vivo, deficiency of Egr1 in the haematopoietic compartment of mice completely abolished the incidence of CaCl2-induced aneurysm formation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app