Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

IL-21 induces antiviral microRNA-29 in CD4 T cells to limit HIV-1 infection.

Initial events after exposure determine HIV-1 disease progression, underscoring a critical need to understand host mechanisms that interfere with initial viral replication. Although associated with chronic HIV-1 control, it is not known whether interleukin-21 (IL-21) contributes to early HIV-1 immunity. Here we take advantage of tractable primary human lymphoid organ aggregate cultures to show that IL-21 directly suppresses HIV-1 replication, and identify microRNA-29 (miR-29) as an antiviral factor induced by IL-21 in CD4 T cells. IL-21 promotes transcription of all miR-29 species through STAT3, whose binding to putative regulatory regions within the MIR29 gene is enriched by IL-21 signalling. Notably, exogenous IL-21 limits early HIV-1 infection in humanized mice, and lower viremia in vivo is associated with higher miR-29 expression. Together, these findings reveal a novel antiviral IL-21-miR-29 axis that promotes CD4 T-cell-intrinsic resistance to HIV-1 infection, and suggest a role for IL-21 in initial HIV-1 control in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app