Add like
Add dislike
Add to saved papers

Staggered multi-site low-frequency electrostimulation effectively induces locomotor patterns in the isolated rat spinal cord.

Spinal Cord 2016 Februrary
STUDY DESIGN: Experimental animal study.

OBJECTIVES: Epidural stimulation has been used to activate locomotor patterns after spinal injury and typically employs synchronous trains of high-frequency stimuli delivered directly to the dorsal cord, thereby recruiting multiple afferent nerve roots. Here we investigate how spinal locomotor networks integrate multi-site afferent input and address whether frequency coding is more important than amplitude to activate locomotor patterns.

SETTING: Italy and Belgium.

METHODS: To investigate the importance of input intensity and frequency in eliciting locomotor activity, we used isolated neonatal rat spinal cords to record episodes of fictive locomotion (FL) induced by electrical stimulation of single and multiple dorsal roots (DRs), employing different stimulating protocols.

RESULTS: FL was efficiently induced through staggered delivery (delays 0.5 to 2 s) of low-frequency pulse trains (0.33 and 0.67 Hz) to three DRs at intensities sufficient to activate ventral root reflexes. Delivery of the same trains to a single DR or synchronously to multiple DRs remained ineffective. Multi-site staggered trains were more efficient than randomized pulse delivery. Weak trains simultaneously delivered to DRs failed to elicit FL. Locomotor rhythm resetting occurred with single pulses applied to various distant DRs.

CONCLUSION: Electrical stimulation recruited spinal networks that generate locomotor programs when pulses were delivered to multiple sites at low frequency. This finding might help devising new protocols to optimize the increasingly more common use of epidural implantable arrays to treat spinal dysfunctions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app