JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Multi-residue determination of 115 veterinary drugs and pharmaceutical residues in milk powder, butter, fish tissue and eggs using liquid chromatography-tandem mass spectrometry.

A simple and sensitive multi-residue method for the determination of 115 veterinary drugs and pharmaceuticals, belonging in more than 20 different classes, in butter, milk powder, egg and fish tissue has been developed. The method involves a simple generic solid-liquid extraction step (solvent extraction, SE) with 0.1% formic acid in aqueous solution of EDTA 0.1% (w/v)-acetonitrile (ACN)-methanol (MeOH) (1:1:1, v/v) with additional ultrasonic-assisted extraction. Precipitation of lipids and proteins was promoted by subjecting the extracts at very low temperature (-23°C) for 12h. Further cleanup with hexane ensures fat removal from the matrix. Analysis was performed by liquid chromatography coupled with electrospray ionization and tandem mass spectrometry (LC-ESI-MS/MS). Two separate runs were performed for positive and negative ionization in multiple reaction monitoring mode (MRM). Particular attention was devoted to extraction optimization: different sample-to-extracting volume ratios, different concentrations of formic acid in the extraction solvent and different ultrasonic extraction temperatures were tested in butter, egg and milk powder samples. The method was also applied in fish tissue samples. It was validated, on the basis of international guidelines, for all four matrices. Quantitative analysis was performed by means of standard addition calibration. For over 80% of the analytes, the recoveries were between 50% and 120% in all matrices studied, with RSD values in the range of 1-18%. Limits of detection (LODs) and quantification (LOQs) ranged from 0.008 μg kg(-1) (oxfendazole in butter) to 3.15 μg kg(-1) (hydrochlorthiazide in egg). The evaluated method provides reliable screening, quantification, and identification of 115 veterinary drug and pharmaceutical residues in foods of animal origin and has been successfully applied in real samples.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app