JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Combination of capillary electrophoresis, molecular modeling and NMR to study the enantioselective complexation of sulpiride with double cyclodextrin systems.

The enantioselective complexation of sulpiride by a number of cyclodextrins (CDs) was deeply investigated by different techniques with the aim of evaluating the role of the used chiral selectors involved in the enantioseparation of the eutomer levosulpiride (S-SUL) and its dextro-isomer by capillary electrophoresis (CE). A CE method was previously developed with the aim of determining the optical purity of S-SUL and was based on the use of a dual cyclodextrin system, made by sulfated-β-cyclodextrin (SβCD) and methyl-β-cyclodextrin (MβCD). In this paper, a molecular modeling study made it possible to explain the different affinity of sulpiride enantiomers for several CDs, which had been tested during the early phase of CE method development. The potential and the gain energy of the inclusion complexes between the enantiomers and neutral and charged CDs were calculated on the minimized conformations. The calculated docking energies indicated that the most stable complexes were effectively obtained with SβCD and MβCD. A correlation between CE migration time of the last migrating enantiomer S-SUL and the stability of analyte-neutral CDs complexes was postulated. Furthermore, two-dimensional rotating-frame Overhauser effect spectroscopy NMR (2-D ROESY) experiments were carried out, which clearly indicated the formation of complexes and suggested the inclusion of the benzene sulfonamide moiety of S-SUL inside the hydrophobic cavity of the CDs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app