JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Peripheral aetiopathogenic drivers and mediators of Parkinson's disease and co-morbidities: role of gastrointestinal microbiota.

We seek an aetiopathogenic model for the spectrum of Parkinson's disease (PD), functional bowel disease, depression and cognitive impairment. The adopted concept is that systemic immuno-inflammatory processes mediate neuro-inflammation. The model would be based on phenotype, exposome (including gastrointestinal microbiome), milieu (immuno-inflammatory and metabolome), human genetics and their interactions. It would enable a patient's position, to be understood in terms of drivers, perpetuators and mediators, and a future position, with and without intervention, predicted. Even the cardinal facets of PD may have different drivers: halting one may allow escape down subordinate pathways. Peptic ulceration is prodromal to PD. In our randomised placebo-controlled trial, hypokinesia improved over the year following biopsy-proven Helicobacter pylori eradication and rigidity worsened. This was independent of any (stable, long t½) antiparkinsonian medication. There are pointers to an autoimmune process: for example, surveillance-confirmed hypokinesia effect was indication specific. During surveillance, successive antimicrobial courses, other than for Helicobacter, were associated with cumulative increase in rigidity. Exhibiting laxatives appeared to stem the overall temporal increase, despite antiparkinsonian medication, in rigidity. Thus, intestinal dysbiosis may be a major source of bystander neuronal damage. There are biological gradients of objective measures of PD facets on circulating inflammatory markers and leucocyte subset counts. Moreover, lactulose hydrogen breath test positivity for small-intestinal bacterial overgrowth (present in two thirds of PD patients) is associated with the same subsets: higher natural killer and total CD4+ counts and lower neutrophils. With greater aetiopathogenic understanding, relatively low cost and on-the-shelf medication could have a major impact. A new generation of animal models, based on the gut microbiome, is envisaged.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app