Add like
Add dislike
Add to saved papers

A numerical model of blood oxygenation during veno-venous ECMO: analysis of the interplay between blood oxygenation and its delivery parameters.

Veno-venous extracorporeal membrane oxygenation (VV-ECMO) is an important tool in the management of most severe forms of acute respiratory failure. The determinants and management of oxygen delivery in patients treated with VV-ECMO is a complex topic. The physiological principles of oxygenation on VV-ECMO are reviewed in many textbooks. However a numerical model is an additional instrument to be used in understanding and exploring this intricate subject matter. We present a numerical model of blood oxygenation during VV-ECMO. Using this model we examined the role and impact of each determinant on blood oxygenation. The numerical analysis of variation and interplay between each oxygenation determinants during VV-ECMO is presented in graphical form. These results corroborate all the findings of previous studies. The proposed numerical model facilitates understanding of oxygenation physiology during VV-ECMO; it can be used for a medical simulation system and for teaching the principles of oxygenation during VV-ECMO.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app