COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

DNA methylation dynamics in human carotid plaques after cerebrovascular events.

OBJECTIVE: To understand whether cerebrovascular events, a major complication of atherosclerosis, are associated with any specific DNA methylation changes in the carotid plaque.

APPROACH AND RESULTS: We profiled the DNA methylomes of human symptomatic carotid plaques obtained from patients who had cerebrovascular events (n=19) and asymptomatic counterparts (n=19) with a high-density microarray (≈485 000 CpG sites, Illumina), and crossed DNA methylation data with RNAseq-based expression data from an independent symptomatic carotid plaque set (n=8). Few (30) CpGs showed a significant (P<0.05; absolute Delta-Beta, >0.20) differential methylation between the 2 groups. Within symptomatic carotid plaques, DNA methylation correlated significantly with postcerebrovascular event time (range, 3-45 days; r-value range, -0.926 to 0.857; P<0.05) for ≈45 000 CpGs, the vast majority of which became hypomethylated with increasing postcerebrovascular event time. Hypomethylation was not due to erasure of the gene-body and CG-poor region hypermethylation that accompany the progression of stable lesions, but rather targeted promoters and CpG islands. Noticeably, promoter hypomethylation and increased expression of genes involved in the inhibition of the inflammatory response, defense against oxidative stress, and active DNA demethylation were observed with increasing postcerebrovascular event time. Concomitantly, histological changes consistent with phagocyte-driven plaque healing were observed.

CONCLUSIONS: Weak changes in the DNA methylome distinguish symptomatic from asymptomatic plaques, but a widespread demethylation resulting in permissive transcriptional marks at atheroprotective gene promoters is established in plaques after a cerebrovascular event, thus mirroring previous observations that ruptured plaques tend to revert to a stable structure. The identified loci are candidate targets to accelerate the pace of carotid plaque stabilization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app