JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Solid Lipid Nanoparticles: A Potential Multifunctional Approach towards Rheumatoid Arthritis Theranostics.

Rheumatoid arthritis (RA) is the most common joint-related autoimmune disease and one of the most severe. Despite intensive investigation, the RA inflammatory process remains largely unknown and finding effective and long lasting therapies that specifically target RA is a challenging task. This study proposes a different approach for RA therapy, taking advantage of the new emerging field of nanomedicine to develop a targeted theranostic system for intravenous administration, using solid lipid nanoparticles (SLN), a biocompatible and biodegradable colloidal delivery system, surface-functionalized with an anti-CD64 antibody that specifically targets macrophages in RA. Methotrexate (MTX) and superparamagnetic iron oxide nanoparticles (SPIONs) were co-encapsulated inside the SLNs to be used as therapeutic and imaging agents, respectively. All the formulations presented sizes under 250 nm and zeta potential values lower than -16 mV, suitable characteristics for intravenous administration. Transmission electron microscopy (TEM) photographs indicated that the SPIONs were encapsulated inside the SLN matrix and MTX association efficiency values were higher than 98%. In vitro studies, using THP-1 cells, demonstrated that all formulations presented low cytotoxicity at concentrations lower than 500 μg/mL. It was proven that the proposed NPs were not cytotoxic, that both a therapeutic and imaging agent could be co-encapsulated and that the SLN could be functionalized for a potential future application such as anti-body specific targeting. The proposed formulations are, therefore, promising candidates for future theranostic applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app