Add like
Add dislike
Add to saved papers

Neuroprotective effect of human mesenchymal stem cells in a compartmentalized neuronal membrane system.

Acta Biomaterialia 2015 September
UNLABELLED: In this work, we describe the development of a compartmentalized membrane system using neonatal rodent hippocampal cells and human mesenchymal stem cells (hMSCs) to investigate the neuroprotective effects of hMSCs. To elucidate this interaction an in vitro oxygen-glucose deprivation (OGD) model was used that mimics central nervous system insults in vivo. Cells were cultured in a membrane system with a sandwich configuration in which the hippocampal cells were seeded on a fluorocarbon (FC) membrane, and were separated by hMSCs through a semipermeable polyethersulfone (PES) membrane that ensures the transport of molecules and paracrine factors, but prevents cell-to-cell contact. This system was used to simulate a cerebral ischemic damage by inducing OGD for 120min. The core contribution of the work highlights the neuroprotective effects of hMSCs on hippocampal cells in a membrane system for the first time. The novel results show that hMSC secretome factors protect hippocampal cells against OGD insults as indicated by the conservation of specific structural and functional cell features together with the development of a highly branched neural network after the damage. Moreover, neuronal cells co-cultured with hMSCs before OGD insult were able to maintain BDNF production and O2 consumption and did not express the apoptotic markers that were expressed in similarly insulted neuronal cells that had not been co-cultured with hMSCs. This compartmentalized membrane system appears to be a very useful and reliable system for studying the neuroprotective effects of hMSCs and identifying secreted factors that may be involved.

STATEMENT OF SIGNIFICANCE: This paper is based on a combined synergism of biomaterials technology and stem cell approach, focusing on the development of a compartmentalized membrane system that serves as an innovative tool for highlighting the role of hMSCs on hippocampal neurons upon damage. The membrane system consists of two different flat sheet membranes, giving rise to double and separated cell membrane compartments that prevent cell-to-cell contact but allow the transport of paracrine factors. This system strongly corroborates the paracrine mediated neuroprotection of hMSCs on ischemic damaged neurons. The challenging and pioneeristic approach by using biomaterials allowed to perform a stepwise analysis of the phenomena, providing new insights into the field of MSC therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app