Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Infrared and Raman spectroscopic methods for characterization of Taxus baccata L.--Improved taxane isolation by accelerated quality control and process surveillance.

Talanta 2015 October 2
Different yew species contain poisonous taxane alkaloids which serve as resources for semi-synthesis of anticancer drugs. The highly variable amounts of taxanes demand new methods for fast characterization of the raw plant material and the isolation of the target structures during phyto extraction. For that purpose, applicability of different vibrational spectroscopy methods in goods receipt of raw plant material and in process control was investigated and demonstrated in online tracking isolation and purification of the target taxane 10-deacetylbaccatin III (10-DAB) during solvent extraction. Applying near (NIRS) and mid infrared spectroscopy (IRS) the amount of botanical impurities in mixed samples of two different yew species (R(2)=0.993), the leave-to-wood ratio for Taxus baccata material (R(2)=0.94) and moisture in dried yew needles (R(2)=0.997) can be quantified. By partial least square analysis (PCA) needles of different Coniferales species were successfully discriminated by Attenuated Total Reflectance-Fourier-Transform Infrared Spectroscopy (ATR-FT-IR). The analytical potential of ATR-FT-IR and Fourier Transform-Raman Spectroscopy (FT-RS) in process control of extraction and purification of taxanes is demonstrated for determination of the water content in methanolic yew extracts (R(2)=0.999) and for quantification of 10-DAB (R(2)=0.98) on a highly sophisticated level. The decrease of 10-DAB in the plant tissue during extraction was successfully visualized by FT-IR imaging of thin cross sections providing new perspectives for process control and design.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app