Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Intra-accumbal CB1 receptor blockade reduced extinction and reinstatement of morphine.

Physiology & Behavior 2015 October 2
The limbic dopaminergic reward system is the main target of morphine-like drugs which begins from the ventral tegmental area (VTA) and sends its dopaminergic projections to the nucleus accumbens (NAc), amygdala, hippocampus and prefrontal cortex. Cannabinoid receptors exist in afferent neurons from these areas to the NAc and can modulate glutamate synaptic transmission in the NAc. Cannabinoids can interact with the opiate system in reward-related behaviors; nevertheless these systems' interaction in extinction duration and reinstatement has not been shown. In the present study, the effects of bilateral intra-accumbal administration of AM251, a CB1 receptor antagonist, on the duration of the extinction phase and reinstatement to morphine were investigated by conditioned place preference (CPP) paradigm. Forty eight adult male albino Wistar rats were used. Bilateral intra-accumbal administration of AM251 (15, 45 and 90μM/0.5μl DMSO per side) was performed. Subcutaneous administration of morphine (5mg/kg) in three consecutive days was used to induce CPP. The results showed that administration of the maximal dose of AM251 during the extinction period significantly reduces duration of extinction and reinstatement to morphine. Administration of the middle dose during the extinction period significantly attenuated reinstatement to morphine. A single microinjection of the middle dose just before the reinstatement phase significantly attenuated reinstatement to morphine only, while bilateral intra-accumbal administration of neither the lowest dose nor the vehicle (DMSO) had any effects. These results for the first time indicated that CB1 receptors within the NAc are involved in the maintenance of morphine rewarding properties, and morphine seeking behaviors in extinguished morphine-induced CPP rats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app