Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

RNA-seq-based transcriptome profiling reveals differential gene expression in the lungs of Sprague-Dawley rats during early-phase acute hypobaric hypoxia.

Individuals subjected to hypobaric hypoxia at high altitudes may exhibit differential physiological responses in terms of susceptibility and tolerance to the development of hypoxia-related disorders. We studied early-phase gene expression in the lungs of Sprague-Dawley rats exhibiting such differential physiological responses after exposure to acute hypobaric hypoxia for 1 h at a simulated altitude of 9144 m. RNA-seq transcriptome profiling of lung tissues revealed differential gene expression in tolerant and susceptible groups, subsequently validated by qRT-PCR for ten selected differentially expressed genes. The gene expression pattern indicated hypometabolism and negative regulation of vasoconstriction in all groups except susceptible rats, coupled with altered MAPK, p53 and JAK-STAT signaling. Upregulation of early-phase response genes including Dusp1 (dual specificity phosphatase), Cdkn1a (cyclin-dependent kinase inhibitor 1A), Txnip (thioredoxin-interacting protein), Rgs1 (regulator of G-protein signaling 1) and Rgs2 (regulator of G-protein signaling 2) in susceptible rats indicated a progression toward growth arrest and apoptosis. Enhanced expression of cell adhesion molecules, wound healing and repair bioprocesses was observed in tolerant males. Upregulated Kcnj15 (potassium inwardly rectifying channel subfamily j membrane 15) and Vsig4 (V-set and Ig domain containing 4) variants in tolerant females suggested adaptation to hypoxia possibly by fluid reabsorption to avoid edematous conditions and suppression of T cell proliferation to avoid acute lung inflammation. Our study might help in understanding the molecular-physiological mechanisms associated with progressive damage in the lung tissues of susceptible and tissue-protective measures in tolerant rats during acute hypobaric hypoxia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app