Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Root of Dictyostelia based on 213 universal proteins.

Dictyostelia are common soil microbes that can aggregate when starved to form multicellular fruiting bodies, a characteristic that has also led to their long history of study and widespread use as model systems. Ribosomal RNA phylogeny of Dictyostelia identified four major divisions (Groups 1-4), none of which correspond to traditional genera. Group 1 was also tentatively identified as sister lineage to the other three Groups, although not consistently or with strong support. We tested the dictyostelid root using universal protein-coding genes identified by exhaustive comparison of six completely sequenced dictyostelid genomes, which include representatives of all four major molecular Groups. A set of 213 genes are low-copy number in all genomes, present in at least one amoebozoan outgroup taxon (Acanthamoeba castellanii or Physarum polycephalum), and phylogenetically congruent. Phylogenetic analysis of a concatenation of the deduced protein sequences produces a single topology dividing Dictyostelia into two major divisions: Groups 1+2 and Groups 3+4. All clades in the tree are fully supported by maximum likelihood and Bayesian inference, and all alternative roots are unambiguously rejected by the approximately unbiased (AU) test. The 1+2, 3+4 root is also fully supported even after deleting clusters with strong individual support for this root, or concatenating all clusters with low support for alternative roots. The 213 putatively ancestral amoebozoan proteins encode a wide variety of functions including 21 KOG categories out of a total of 25. These comprehensive analyses and consistent results indicate that it is time for full taxonomic revision of Dictyostelia, which will also enable more effective exploitation of its unique potential as an evolutionary model system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app