Add like
Add dislike
Add to saved papers

A novel design of a polymeric aortic valve.

INTRODUCTION: In this paper we propose a novel method for developing a polymeric heart valve that could potentially offer an optimum solution for a heart valve substitute. The valve design proposed will provide superior hydrodynamic performance and excellent structural integrity. A full description of the design process is given together with an analysis of the hemodynamic performance using a 2-way strongly coupled Fluid Structure Interaction (FSI).

METHOD: A polymeric tri-leaflet heart valve is designed based on a patient's sinus of Valsalva (SOV) geometry. The design strategy aims to improve valve hemodynamic performance as well as valve durability by avoiding stress concentrations in the leaflets and reducing the maximum stress level. The valve dynamics and stress levels are also validated by comparing the predicted data to existing experimental and numerical data.

RESULTS: The stress distribution in the valve structure is fully characterized throughout the simulation and Von Mises stress is found to be up to 5.32 Mpa during diastole. The results show that an effective orifice area (EOA) and a pressure drop of 3.22 cm^2, and 3.52 mmHg, respectively, can be achieved using the proposed design.

CONCLUSIONS: The optimized valve demonstrates high hemodynamic performance with no sign of damaging stress concentration in the entire cardiac cycle.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app