Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Integrated 3D view of postmating responses by the Drosophila melanogaster female reproductive tract, obtained by micro-computed tomography scanning.

Physiological changes in females during and after mating are triggered by seminal fluid components in conjunction with female-derived molecules. In insects, these changes include increased egg production, storage of sperm, and changes in muscle contraction within the reproductive tract (RT). Such postmating changes have been studied in dissected RT tissues, but understanding their coordination in vivo requires a holistic view of the tissues and their interrelationships. Here, we used high-resolution, multiscale micro-computed tomography (CT) scans to visualize and measure postmating changes in situ in the Drosophila female RT before, during, and after mating. These studies reveal previously unidentified dynamic changes in the conformation of the female RT that occur after mating. Our results also reveal how the reproductive organs temporally shift in concert within the confines of the abdomen. For example, we observed chiral loops in the uterus and in the upper common oviduct that relax and constrict throughout sperm storage and egg movement. We found that specific seminal fluid proteins or female secretions mediate some of the postmating changes in morphology. The morphological movements, in turn, can cause further changes due to the connections among organs. In addition, we observed apparent copulatory damage to the female intima, suggesting a mechanism for entry of seminal proteins, or other exogenous components, into the female's circulatory system. The 3D reconstructions provided by high-resolution micro-CT scans reveal how male and female molecules and anatomy interface to carry out and coordinate mating-dependent changes in the female's reproductive physiology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app