Add like
Add dislike
Add to saved papers

Quantitative Macro-Raman Spectroscopy on Microparticle-Based Pharmaceutical Dosage Forms.

Quantitative macro-Raman spectroscopy was applied to the analysis of the bulk composition of pharmaceutical drug powders. Powders were extracted from seven commercial lactose-carrier-based dry-powder inhalers: Flixotide 50, 100, 250, and 500 μg/dose (four concentrations of fluticasone propionate) and Seretide 100, 250, and 500 μg/dose (three concentrations of fluticasone propionate, each with 50 μg/dose salmeterol xinafoate ). Also, a carrier-free pressurized metered-dose inhaler of the same combination product, Seretide 50 (50 μg fluticasone propionate and 25 μg salmeterol xinafoate per dose) was tested. The applicability of a custom-designed dispersive macro-Raman instrument with a large sample volume of 0.16 μL was tested to determine the composition of the multicomponent powder samples. To quantify the error caused by sample heterogeneity, a Monte Carlo model was developed to predict the minimum sample volume required for representative sampling of potentially heterogeneous samples at the microscopic level, characterized by different particle-size distributions and compositions. Typical carrier-free respirable powder samples required a minimum sample volume on the order of 10(-4) μL to achieve representative sampling with less than 3% relative error. In contrast, dosage forms containing non-respirable carriers (e.g., lactose) required a sample volume on the order of 0.1 μL for representative measurements. Error analysis of the experimental results showed good agreement with the error predicted by the simulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app