Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Stereocontrolled Synthesis of a Potential Transition-State Inhibitor of the Salicylate Synthase MbtI from Mycobacterium tuberculosis.

Mycobactins are small-molecule iron chelators (siderophores) produced by Mycobacterium tuberculosis (Mtb) for iron mobilization. The bifunctional salicylate synthase MbtI catalyzes the first step of mycobactin biosynthesis through the conversion of the primary metabolite chorismate into salicylic acid via isochorismate. We report the design, synthesis, and biochemical evaluation of an inhibitor based on the putative transition state (TS) for the isochorismatase partial reaction of MbtI. The inhibitor mimics the hypothesized charge buildup at C-4 of chorismate in the TS as well as C-O bond formation at C-6. Another important design element of the inhibitor is replacement of the labile pyruvate side chain in chorismate with a stable C-linked propionate isostere. We developed a stereocontrolled synthesis of the highly functionalized cyclohexene inhibitor that features an asymmetric aldol reaction using a titanium enolate, diastereoselective Grignard addition to a tert-butanesulfinyl aldimine, and ring closing olefin metathesis as key steps.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app