JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

EGF-Induced Connexin43 Negatively Regulates Cell Proliferation in Human Ovarian Cancer.

Connexin43 (Cx43) has been shown to regulate cell proliferation and its downregulation is correlated with poor prognosis and survival in several types of human cancer. Cx43 expression levels are frequently downregulated in human ovarian cancer, suggesting a potential role for Cx43 in regulating the progression of this disease. Epidermal growth factor (EGF) is a well-characterized hormone that stimulates ovarian cancer cell proliferation. Although EGF is able to regulate Cx43 expression in other cell types, it is unclear whether EGF can regulate Cx43 expression in ovarian cancer cells. Additionally, it remains unknown whether Cx43 is involved in EGF-stimulated ovarian cancer cell proliferation. In the present study, we demonstrate that treatment with EGF upregulates Cx43 expression in two ovarian cancer cell lines, SKOV3 and OVCAR4. Although treatment with EGF activates both ERK1/2 and Akt signaling pathways, pharmacological inhibition and siRNA-mediated knockdown suggest that only the activation of Akt1 is required for EGF-induced Cx43 upregulation. Functionally, Cx43 knockdown enhanced basal and EGF-induced cell proliferation, whereas the proliferative effects of EGF were reduced by Cx43 overexpression. Co-treatment with the gap junction inhibitor carbenoxolone did not alter the suppressive effects of Cx43 overexpression on EGF-induced cell proliferation, suggesting a gap junction-independent mechanism. This study reveals an important role for Cx43 as a negative regulator of EGF-induced human ovarian cancer cell proliferation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app