Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Targeting EZH2 and PRC2 dependence as novel anticancer therapy.

Distinctive patterns of chromatin modification control gene expression and define cellular identity during development and cell differentiation. Polycomb repressive complex 2 (PRC2), the sole mammalian enzymatic complex capable of establishing gene-repressive high-degree methylation of histone H3 at lysine 27 (H3K27), plays crucial roles in regulation of normal and malignant hematopoiesis. Recently, increasing evidence has indicated that recurrent gain-of-function mutation and overexpression of EZH2, the catalytic subunit of PRC2, drive and promote malignant transformation such as B-cell lymphomagenesis, providing a rationale for PRC2 inhibition as a novel anticancer strategy. Here, we summarize the recently developed strategies for inhibition of PRC2, which include a series of highly specific, highly potent, small-molecule inhibitors of EZH2 and EZH1, an EZH2-related methyltransferase. PRC2 establishes functional crosstalk with numerous epigenetic machineries during dynamic regulation of gene transcription. Perturbation of such functional crosstalk caused by genetic events observed in various hematologic cancers, such as inactivation of SNF5 and somatic mutation of UTX, confers PRC2 dependence, thus rendering an increased sensitivity to PRC2 inhibition. We discuss our current understanding of EZH2 somatic mutations frequently found in B-cell lymphomas and recurrent mutations in various other epigenetic regulators as novel molecular predictors and determinants of PRC2 sensitivity. As recent advances have indicated a critical developmental or tumor-suppressive role for PRC2 and EZH2 in various tissue types, we discuss concerns over potentially toxic or even adverse effects associated with EZH2/1 inhibition in certain biological contexts or on cancer genetic background. Collectively, inhibition of PRC2 catalytic activity has emerged as a promising therapeutic intervention for the precise treatment of a range of genetically defined hematologic malignancies and can be potentially applied to a broader spectrum of human cancers that bear similar genetic and epigenetic characteristics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app