Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Promotion of Endoplasmic Reticulum-Associated Degradation of Procathepsin D by Human Herpesvirus 8-Encoded Viral Interleukin-6.

UNLABELLED: The interleukin-6 homologue (viral interleukin-6 [vIL-6]) of human herpesvirus 8 is implicated in viral pathogenesis due to its proproliferative, inflammatory, and angiogenic properties, effected through gp130 receptor signaling. In primary effusion lymphoma (PEL) cells, vIL-6 is expressed latently and is essential for normal cell growth and viability. This is mediated partly via suppression of proapoptotic cathepsin D (CatD) via cocomplexing of the endoplasmic reticulum (ER)-localized CatD precursor, pro-CatD (pCatD), and vIL-6 with the previously uncharacterized ER membrane protein vitamin K epoxide reductase complex subunit 1 variant 2 (VKORC1v2). vIL-6 suppression of CatD occurs also during reactivated productive replication in PEL cells and is likely to contribute to proreplication functions of vIL-6. Here, we report that vIL-6 suppresses CatD through vIL-6, VKORC1v2, and pCatD association with components of the ER-associated degradation (ERAD) machinery. In transfected cells, expression of vIL-6 along with CatD led to proteasome-dependent (inhibitor-sensitive) decreases in CatD levels and the promotion of pCatD polyubiquitination. Depletion of particular ERAD-associated isomerases, lectins, and translocon components, including ERAD E3 ubiquitin ligase HRD1, diminished suppression of CatD by vIL-6. Coprecipitation assays identified direct or indirect interactions of VKORC1v2, vIL-6, and pCatD with translocon proteins (SEL1L and/or HRD1) and ERAD-associated lectins OS9 and XTP3-B. Endogenous CatD expression in PEL cells was increased by depletion of ERAD components, and suppression of CatD by vIL-6 overexpression in PEL cells was dependent on HRD1. Our data reveal a new mechanism of ER-localized vIL-6 activity and further characterize VKORC1v2 function.

IMPORTANCE: Human herpesvirus 8 (HHV-8) viral interleukin-6 (vIL-6), unlike cellular IL-6 proteins, is secreted inefficiently and sequestered mainly in the endoplasmic reticulum (ER), from where it can signal through the gp130 receptor. We have recently reported that vIL-6 also associates with a novel membrane protein termed vitamin K epoxide reductase complex subunit 1 variant 2 (VKORC1v2) and mediates suppression of VKORC1v2-cointeracting cathepsin D, a stress-released proapoptotic protein negatively impacting HHV-8 latently infected primary effusion lymphoma (PEL) cell viability and reactivated virus productive replication. Here, we have examined the mechanistic basis of the VKORC1v2-vIL-6 interaction-dependent suppression of cathepsin D and have found that this novel activity of vIL-6 is mediated through coassociation of VKORC1v2, procathepsin D, and vIL-6 with components of the ER-associated degradation (ERAD) machinery. Our findings provide information of significance for potential antiviral and therapeutic targeting of VKORC1v2-mediated vIL-6 activities and also indicate the nature of VKORC1v2 function in normal cell biology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app