Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Reconstitution of microtubule-based motility using cell extracts.

Long-range intracellular transport of organelles driven by kinesin and dynein motor proteins depends on additional cellular factors including adaptors and scaffolding proteins. While single-molecule studies of the motility of purified motor proteins have been a powerful approach, these assays are not fully representative of the complex interactions that occur in a cellular environment. To gain insights into the functioning of adaptor proteins that work in concert with motors proteins, motility assays in cell extracts have been developed. These assays are an attractive means to begin to dissect the roles of additional factors in motor-driven transport. Further, this system can be easily manipulated to study this process in different physiological environments. Here we describe in vitro reconstitution of motor-driven motility along microtubules in cell extracts, followed by considerations for data analysis and how these assays can be powerful in informing our understanding of basic cellular processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app