JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Statistical modeling to characterize relationships between knee anatomy and kinematics.

The mechanics of the knee are complex and dependent on the shape of the articular surfaces and their relative alignment. Insight into how anatomy relates to kinematics can establish biomechanical norms, support the diagnosis and treatment of various pathologies (e.g., patellar maltracking) and inform implant design. Prior studies have used correlations to identify anatomical measures related to specific motions. The objective of this study was to describe relationships between knee anatomy and tibiofemoral (TF) and patellofemoral (PF) kinematics using a statistical shape and function modeling approach. A principal component (PC) analysis was performed on a 20-specimen dataset consisting of shape of the bone and cartilage for the femur, tibia and patella derived from imaging and six-degree-of-freedom TF and PF kinematics from cadaveric testing during a simulated squat. The PC modes characterized links between anatomy and kinematics; the first mode captured scaling and shape changes in the condylar radii and their influence on TF anterior-posterior translation, internal-external rotation, and the location of the femoral lowest point. Subsequent modes described relations in patella shape and alta/baja alignment impacting PF kinematics. The complex interactions described with the data-driven statistical approach provide insight into knee mechanics that is useful clinically and in implant design.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app