Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Learning sequence determinants of protein:protein interaction specificity with sparse graphical models.

In studying the strength and specificity of interaction between members of two protein families, key questions center on which pairs of possible partners actually interact, how well they interact, and why they interact while others do not. The advent of large-scale experimental studies of interactions between members of a target family and a diverse set of possible interaction partners offers the opportunity to address these questions. We develop here a method, DgSpi (data-driven graphical models of specificity in protein:protein interactions), for learning and using graphical models that explicitly represent the amino acid basis for interaction specificity (why) and extend earlier classification-oriented approaches (which) to predict the ΔG of binding (how well). We demonstrate the effectiveness of our approach in analyzing and predicting interactions between a set of 82 PDZ recognition modules against a panel of 217 possible peptide partners, based on data from MacBeath and colleagues. Our predicted ΔG values are highly predictive of the experimentally measured ones, reaching correlation coefficients of 0.69 in 10-fold cross-validation and 0.63 in leave-one-PDZ-out cross-validation. Furthermore, the model serves as a compact representation of amino acid constraints underlying the interactions, enabling protein-level ΔG predictions to be naturally understood in terms of residue-level constraints. Finally, the model DgSpi readily enables the design of new interacting partners, and we demonstrate that designed ligands are novel and diverse.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app