JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
REVIEW
Add like
Add dislike
Add to saved papers

Calcium Channel CaVα₁ Splice Isoforms - Tissue Specificity and Drug Action.

Voltage-gated calcium ion channels are essential for numerous biological functions of excitable cells and there is wide spread appreciation of their importance as drug targets in the treatment of many disorders including those of cardiovascular and nervous systems. Each Cacna1 gene has the potential to generate a number of structurally, functionally, and in some cases pharmacologically unique CaVα1 subunits through alternative pre-mRNA splicing and the use of alternate promoters. Analyses of rapidly emerging deep sequencing data for a range of human tissue transcriptomes contain information to quantify tissue-specific and alternative exon usage patterns for Cacna1 genes. Cellspecific actions of nuclear DNA and RNA binding proteins control the use of alternate promoters and the selection of alternate exons during pre-mRNA splicing, and they determine the spectrum of protein isoforms expressed within different types of cells. Amino acid compositions within discrete protein domains can differ substantially among CaV isoforms expressed in different tissues, and such differences may be greater than those that exist across CaV channel homologs of closely related species. Here we highlight examples of CaV isoforms that have unique expression patterns and that exhibit different pharmacological sensitivities. Knowledge of expression patterns of CaV isoforms in different human tissues, cell populations, ages, and disease states should inform strategies aimed at developing the next generation of CaV channel inhibitors and agonists with improved tissue-specificity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app