JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A functional single-nucleotide polymorphism in the ERCC1 gene alters the efficacy of narrowband ultraviolet B therapy in patients with active vitiligo in a Chinese population.

BACKGROUND: T lymphocytes have been shown to cause the destruction of melanocytes in vitiligo pathogenesis. Narrowband ultraviolet B (NB-UVB), as an effective therapeutic strategy in vitiligo, can lead to the formation of DNA photoproducts such as cyclobutane pyrimidine dimers (CPDs) in perilesional lymphocytes and thus induce skin immunosuppression. The repair of DNA photoproducts is performed mainly through the nucleotide excision repair (NER) pathway. We hypothesized that single-nucleotide polymorphisms (SNPs) in NER genes might influence the repair capacity of CPDs and thus contribute to variations in phototherapy efficiency.

OBJECTIVES: To detect genetic polymorphisms in NER genes and their relationship with the efficacy of NB-UVB therapy in patients with active vitiligo.

METHODS: We investigated the association of NER SNPs (XPA A23G, XPC Ci11A, XPC C2919A and ERCC1 C118T) with phototherapy efficacy in 86 patients with vitiligo who received NB-UVB treatment. Furthermore, we examined the impact of ERCC1 C118T on the apoptosis of T lymphocytes and CPD accumulation after NB-UVB irradiation.

RESULTS: We found that patients with vitiligo with the ERCC1 codon 118 CC genotype showed better efficacy after NB-UVB irradiation than those with the ERCC1 118 TT and CT genotypes, whereas no such association was documented among the genotypes of XPA A23G, XPC Ci11A or XPC C2919A. Additionally, the apoptosis rates and CPD levels of lymphocytes after NB-UVB irradiation in patients with the ERCC1 118 CC genotype were significantly higher than those in patients with the ERCC1 118 TT and CT genotypes.

CONCLUSIONS: The ERCC1 118 CC genotype confers better efficacy of NB-UVB therapy in patients with active vitiligo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app