JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Identifying patients who may benefit from inferior turbinate reduction using computer simulations.

Laryngoscope 2015 December
OBJECTIVES/HYPOTHESIS: (1) To determine objective criteria to predict which patients may benefit most from inferior turbinate reduction surgery. (2) To test whether the site of turbinate reduction, either along the nasal floor (bottom resection) or along the septal side (medial resection), impacts the extent to which nasal resistance is reduced.

STUDY DESIGN: Case series.

METHODS: Three-dimensional reconstructions of the nasal anatomy of five nasal airway obstruction patients were created based on presurgical computed tomography scans. Inferior turbinate reduction models were created for each patient using virtual surgery. Airflow, heat transfer, and humidity transport during inspiration were simulated using computational fluid dynamics (CFD).

RESULTS: Nasal resistance curves revealed little to no difference between bottom resection and medial resection models. In two patients, little change was observed in nasal resistance after virtual inferior turbinate reduction, which was attributed to the narrowest cross-sections being restricted to the anterior nose (i.e., anterior to the inferior turbinate). The three patients whose nasal resistances decreased substantially after virtual inferior turbinate reduction had a narrower airspace in the turbinate region and higher nasal resistance presurgery. Nasal air conditioning capacity was more affected by medial resections.

CONCLUSIONS: CFD simulations predicted no significant difference in the decrease in nasal resistance between virtual inferior turbinate reductions performed by bottom versus medial resection of the turbinate. However, bottom resections better preserved the calculated humidification efficiency. The simulations predicted that the greatest reduction in nasal resistance occurs in patients with the highest presurgical resistance in the turbinate region.

LEVEL OF EVIDENCE: 4.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app