JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Protein carbonyl levels correlate with performance in elite field hockey players.

Excess and incorrectly selected exercise can degrade athletic performance from an imbalance in redox homeostasis and oxidative stress, but well-planned training and nutrition can improve antioxidant capacity. The aim of the study was to investigate how nutrient intake could influence oxidative stress and cell lesion biomarkers after 5 days of training followed by a game. Blood was collected from 10 athletes at the start of training (basal), after training (pre-game), and postgame. Their acceleration capacity also was measured pre- and postgame. Blood analysis showed an increase in lactate concentration postgame (13%) and total antioxidant capacity increased both pre-game (13.1%) and postgame (12.7%), all in comparison with basal levels. An oxidative stress marker, protein carbonyl (PC), increased 3-fold over the course of the game, which correlated with a decreased acceleration (r = 0.749). For biomarkers of tissue damage, creatine kinase and aspartate transaminase (AST) increased postgame by 150% and 75%, respectively. The AST variation had a high negative correlation with energy and carbohydrate consumption and a moderate correlation with lipid and vitamin C intake. Protein intake had a positive but moderate correlation with reduced glutathione. The observed correlations suggest that nutritional monitoring can improve exercise physiological homeostasis and that PC serves as a good biomarker for oxidative stress and performance loss.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app