Add like
Add dislike
Add to saved papers

Homology modelling and molecular docking of MDR1 with chemotherapeutic agents in non-small cell lung cancer.

MDR1, a protein commonly involved in drug transport, has been linked to multi drug resistance and disease progression in cancers such as non-small cell lung cancer. Hence, targeting this protein is essential for improving drug design and preventing adverse drug-drug interactions. The aim of the study was to examine chemotherapeutic drug binding to MDR1 and the interactions therein. We have used Schrödinger suite 2014, to perform homology modelling of human MDR1 based on Mouse MDR1, followed by Induced Fit Docking with Paclitaxel, Docetaxel, Gemcitabine, Carboplatin and Cisplatin drugs. Finally, we evaluated drug binding affinities using Prime/MMGBSA and using these scores we compared the affinities of combination therapies against MDR1. Analysis of the docking results showed Paclitaxel>Docetaxel>Gemcitabine>Carboplatin>Cisplatin as the order of binding affinities, with Paclitaxel having the best docking score. The combination drug binding affinity analysis showed Paclitaxel+Gemcitabine to have the best docking score and hence, efficacy. Through our investigation we have identified the residues Gln 195 and Gln 946 to be more frequently involved in drug binding interactions with MDR1. Our results suggest that, Paclitaxel or combination of Paclitaxel+Gemcitabine could serve as a suitable therapy against MDR1 in NSCLC patients. Thus, our study provides new insight into the possible repurposing of chemotherapeutic drugs in targeting elevated MDR1 levels in NSCLC patients, thereby ensuring better overall outcome. Further our study highlights the use of in silico methodologies in understanding drug binding to protein targets and its relevance to advancing lung cancer therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app