JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Antibacterial Properties Associated with Chitosan Nanoparticle Treatment on Root Dentin and 2 Types of Endodontic Sealers.

INTRODUCTION: The aim of this study was to evaluate the efficacy of carboxymethyl chitosan (CMCS) and chitosan nanoparticles (CNps) to inactivate bacteria and prevent biofilm formation at sealer-dentin interfaces.

METHODS: The study was divided into 3 stages: first stage, the experiment was conducted to analyze the antibacterial properties of CMCS in different formulations against biofilms; second stage, direct-contact and membrane-restricted methods were used to evaluate the antibacterial properties of an epoxy resin (ThermaSeal Plus; Dentsply Tulsa Dental, Tulsa, OK) and calcium silicate (MTA Fillapex; Angelus SA, Londrina, PR, Brazil) based-sealers with or without CNps; and third stage, biofilm formation at the sealer dentin interfaces of root dentin treated with CMCS and filled with gutta-percha and CNp incorporated sealer were analyzed after 1- and 4-week aging periods. The samples were treated and filled as follows: (1) distilled water: unaltered sealer (control group), (2) CMCS: sealer+CNps (CMCS group), and (3) CMCS/rose bengal: sealer+CNps (CMCS/RB group). Enterococcus faecalis was used to infect all the samples. Microbiological and microscopic analyses were used to assess the antibacterial characteristics.

RESULTS: CMCS-based treatments effectively killed bacteria adherent on root dentin (P < .05). The addition of CNps to ThermaSeal enhanced its antibacterial ability by direct-contact and membrane-restricted tests (P < .05). The CNp incorporation significantly increased the antibacterial efficacy of root canal sealers even after a 4-week aging time (P < .05).

CONCLUSIONS: This study highlighted the ability of CMCS to disinfect root canal dentin and inhibit bacterial adhesion. CNps in root canal sealers are capable of maintaining their antibacterial activity even after prolonged aging.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app