JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Graphene-CNT nanohybrid aptasensor for label free detection of cardiac biomarker myoglobin.

We report a label free electrochemical detection of cardiac bio-marker myoglobin (Mb) on aptamer functionalized rGO/CNT nanostructured electrodes by measuring its direct electron transfer (DET). Configured as a highly responsive aptasensor, the newly developed biosensing platform exhibits synergistic effect of the nano-hybrid functional construct by combining good electrical properties and the facile chemical functionality of nanohybrid for the compatible bio-interface development. The specific anti-Mb aptamer was generated by five iterative SELEX (Systematic evolution of ligands by exponential enrichment) rounds, showing high senstivity (KD ~65 pM). The aptamer functionalized rGO/CNT nanostructured electrodes demonstrated a significant increase in signal response with a detection limit of ~0.34 ng/mL in the dynamic response range between 1 ng/mL and 4 µg/mL for Mb. The newly developed DET assay format presents a promising candidate in point-of-care diagnosis for routine screening of Mb in patient's samples.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app