Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

β3-Adrenoceptor-mediated relaxation of rat and human urinary bladder: roles of BKCa channels and Rho kinase.

Previous studies suggest that the large-conductance Ca(2+)-activated K(+) (BKCa) channel and Rho-kinase play major roles in the control of urinary bladder tone. Here, we investigated their involvement in β-adrenoceptor (AR)-mediated relaxation of rat and human bladder. Concentration-response curves of isoprenaline and mirabegron-induced bladder relaxation were generated against passive tension and KCl- and carbachol-induced tone, in the absence or presence of the BKCa channel inhibitor iberiotoxin (100 nM) or the Rho-kinase inhibitor Y27,632 (1 μM). Myosin light chain (MLC) phosphorylation was studied by Western blot. In rat, iberiotoxin only slightly altered isoprenaline- and mirabegron-induced relaxation against KCl-induced tone but attenuated relaxation by both agonists against carbachol-induced tone. Y27,632 enhanced isoprenaline- or mirabegron-induced relaxation only against carbachol-induced tone. In humans, iberiotoxin slightly enhanced relaxation by both agonists against carbachol-induced pre-contraction. Y27,632 did not change isoprenaline-induced relaxation but enhanced that by mirabegron. Under passive tension, MLC phosphorylation was markedly reduced by both β-AR agonists, an effect insensitive to Y27,632. In the presence of carbachol, both β-AR agonists increased MLC phosphorylation, an effect reduced by Y27,632 only in the presence of 1 μM carbachol. These results indicate that the extent of BKCa channel and Rho-kinase involvement in relaxation induced by β-AR agonists depends on pre contractile stimulus and species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app